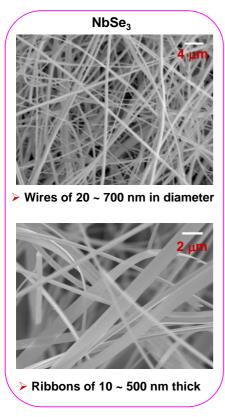
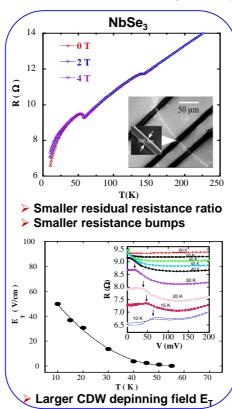
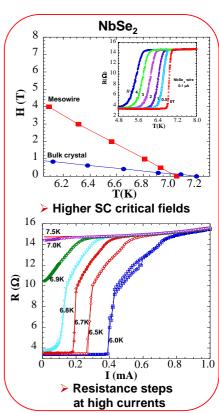
Size Effect in One-dimensional NbSe₃ and NbSe₂

Z. L. Xiao^{a,b}, Y. S. Hor^b, U. Welp^b, Y. Ito^{a,b}, U. Patel^{a,b}, R. E. Cook^b, J. F. Mitchell^b, and W. K. Kwok^b

^aDepartment of Physics, Northern Illinois University


^bMaterials Science Division, Argonne National Laboratory


Motivation


- Niobium triselenide (NbSe₃): a model system for investigating charge-density-waves (CDWs).
- Niobium diselenide (NbSe₂): a conventional superconductor with rich vortex physics.
- Exploring phenomena and physics in pristine crystals at the mesoscopic scale.
- Developing new approaches to synthesize one dimensional (1D) crystals.

Major Accomplishments

- ➤ NbSe₃ nanowires and nanoribbons synthesized through direct reaction of Nb and Se powders
- ➤ NbSe₂ nanowires and nanoribbons converted from NbSe₃ precursors.
- ➤ Size effects observed in both CDW and superconducting (SC) systems.

Future Directions

NbSe₃

- CDW phase transitions at various geometries and sizes
- CDW pinning mechanisms at the nanoscale

NbSe₂

- Phase diagrams of normal~superconducting transitions of nanowires with various cross-section sizes
- Thermal and quantum phase slips
- > Mechanisms for current-induced breakdown of superconductivity
- > Dynamics of a few vortex rows in nanoribbons

"few vortex rows" superconductor

Y. S. Hor et al., Applied Physics Letters 87, 142506 (2005)